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Ultimate lateral pressure of two side-by-side piles in clay

K. GEORGIADIS�,† , S . W. SLOAN† and A. V. LYAMIN†

The ultimate earth resistance for a group of two side-by-side piles that are laterally loaded in clay is
investigated using four different methods of analysis: three numerical (the displacement finite-element
method, and the upper- and lower-bound finite-element limit analysis methods) and one analytical (an
analytical upper-bound plasticity method developed in this paper). The results of the three numerical
methods are shown to be in excellent agreement, while the analytical solution presents a theoretical
upper bound that is very close to the numerical results. The results of the analyses are used to identify
the predominant failure mechanisms for different pile spacings and pile–soil adhesions. They are also
used to develop a design chart and design equations for determination of the ultimate lateral bearing
capacity factor.

KEYWORDS: bearing capacity; clays; finite-element modelling; limit state design/analysis; piles; plasticity;
theoretical analysis

INTRODUCTION
The lateral resistance of piles in clay is commonly expressed
in terms of the lateral bearing capacity factor, Np, defined as

Np ¼
pu

su D
(1)

where pu is the ultimate load per unit length, su is the
undrained shear strength, and D is the pile diameter. Np

increases with depth from an initial low value at the ground
surface to a maximum value at a certain depth, which
corresponds to plane-strain soil movement around the pile,
and remains constant thereafter. Various expressions have
been proposed and are currently used in practice for the
determination of Np with depth for single piles in clay.
These have been based on pile load tests (e.g. Matlock,
1970; Reese & Welch, 1975; Stevens & Audibert, 1980),
model pile tests (e.g. Pan et al., 2000; Jeanjean, 2009),
three-dimensional displacement finite-element analysis (e.g.
Brown & Shie, 1991; Yang & Jeremic, 2002; Georgiadis &
Georgiadis, 2010) and analytical upper-bound limit analysis
(Murff & Hamilton, 1993).

In the idealised framework of rigid-plastic limit analysis,
the ultimate lateral bearing capacity factor (at large depths)
for single piles depends exclusively on the pile–soil adhe-
sion. Randolph & Houlsby (1984) presented two-dimensional
lower and upper-bound plasticity calculations for the ulti-
mate bearing capacity factor, which provided the exact
solution for fully rough piles, and, following correction of
an error pointed out by Murff et al. (1989), a good
approximation for lower pile–soil adhesions. An improved
upper-bound solution for low pile–soil adhesion and per-
fectly smooth piles was proposed by Christensen & Niewald
(1992), while Martin & Randolph (2006) presented a com-
bined upper-bound mechanism, which provides the best
solution to date (exact for all practical purposes) for the
whole range of pile–soil adhesions.

While the ultimate lateral bearing capacity of single piles

in clay has been established, very limited work has been
published for the case of pile groups. It is common practice to
take account of pile effects on lateral resistance through the
application of a multiplication factor, called the p-multiplier,
on the single-pile lateral load distribution. Such multiplication
factors have been proposed by several investigators (Brown et
al., 1988; Reese et al., 1996; Reese & Van Impe, 2001; Ilyas
et al., 2004; Rollins et al., 2006), based mainly on full-scale
pile load tests, and are included in design codes such as
AASHTO (2007) and the US Army (1993). Owing to the high
cost of fully instrumented lateral pile load tests, the available
p-multipliers generally lack sufficient validation, and exhibit
significant scatter. More importantly, since the proposed mul-
tipliers are back-calculated from measured pile-head load–
displacement relationships, it is not possible to determine the
variation with depth, and consequently a single value is
assigned to each pile.

This paper presents an investigation of the ultimate lateral
soil resistance (at large depths) on two piles that are laterally
loaded parallel to their plane of symmetry, as shown in Fig.
1. Four methods of analysis are employed: the displacement
finite-element method, the upper- and lower-bound finite-
element limit analysis methods, and the analytical upper-
bound plasticity method.

FINITE-ELEMENT ANALYSES
A series of displacement finite-element analyses was per-

formed with the computer program Plaxis 2D 2010 (Brink-
greve et al., 2011) in which two infinitely long cylindrical
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piles in an infinite elastic-perfectly plastic soil medium were
displaced parallel to each other, as shown in Fig. 1. The piles
were modelled as linear elastic with the elastic properties of
reinforced concrete (Young’s modulus Ep ¼ 2.9 3 107 kPa
and Poisson’s ratio �p ¼ 0.1, while the soil was modelled as a
Tresca material with undrained shear strength su ¼ 100 kPa,
undrained Young’s modulus Eu ¼ 200su and undrained Pois-
son’s ratio �u ¼ 0.495. Various adhesion factors Æ (¼ �f /su,
where �f is the limiting pile–soil adhesion) and pile spacings
(s) were considered, while the pile diameter was taken as
D ¼ 1 m in all analyses.

Owing to the symmetry of the geometry and the loading
conditions, only half of the problem was analysed. A typical
finite-element mesh is shown in Fig. 2, for s /D ¼ 3. It
consists of approximately 7300 15-noded triangular elements
for both the piles and the surrounding soil, with interface
elements placed between the piles and the soil. In order to
approximate rigid-plastic interface behaviour, high elastic
normal and shear stiffnesses were assigned to the interface
elements (11 3 106 kN/m3 and 106 kN/m3 respectively). The
same mesh density in the region around the pile was used in
all analyses, while different pile spacings were modelled
simply by translating the left mesh boundary towards or
away from the pile. The other three boundaries were placed
at a distance of 15D from the pile. All four boundaries of
the mesh were fixed in the normal direction.

According to the Tresca failure criterion, which was
adopted for the soil, the shear strength is independent of the
normal stress level. Consequently, the finite-element results
are independent of the initial stresses, and therefore these
were specified as zero at the beginning of each analysis. Pile
loading was subsequently simulated by applying prescribed
displacement to all nodes on the pile diameter. The undrained
bearing capacity factor Np for each case was then calculated
as the ratio of the resulting reaction force over suD. For the

case of a single pile (i.e. with the left boundary sufficiently
far away from the pile so that the failure mechanism and the
resulting ultimate load are not affected), bearing capacity
factors Np of 9.19 and 11.95 were calculated for adhesion
factors Æ of 0 and 1 respectively. These values compare
excellently with the lower bound solution of Np ¼ 9.14 and
the exact solution of Np ¼ 11.94 (0.53% and 0.08% differ-
ence respectively) by Randolph & Houlsby (1984).

Typical curves of normalised load (p/suD) against normal-
ised displacement (y/D) obtained from the finite-element
analyses are shown in Fig. 3 for s/D ¼ 3 and several adhe-
sion factors (Æ ¼ 0.01, 0.25, 0.5, 0.75 and 1). As seen in
this figure, a decrease in the adhesion factor leads to the
expected lower calculated bearing capacity. It is also evident

(a)

(b)

Fig. 2. (a) Finite-element mesh with boundaries; (b) detail of finite-element mesh around pile
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in Fig. 3 that collapse is well defined for all adhesion factors
considered, since a horizontal section of constant collapse
load can be observed in all load–displacement curves.

The variation of the bearing capacity factor Np (¼ pu/suD)
with the normalised pile spacing s/D is shown in Fig. 4 for
the case of a fully rough pile (Æ ¼ 1). As the pile spacing
decreases, the bearing capacity factor Np initially decreases
from its single-pile value of 11.95, reaches a minimum value
of 11.31 at s/D ¼ 2.7, then increases to a peak value of
12.91 at s/D ¼ 1.23, and finally drops sharply to 11.69 for
the extreme case of two piles in contact with each other.
This behaviour, and especially the peak of the bearing
capacity factor at small pile spacing, is rather unexpected,
and in contrast to the common assumption that the lateral

bearing capacity should continuously reduce with a reduction
in pile spacing. Such a continuous reduction is assumed, for
example, in the p-multiplier method (e.g. Reese & Van
Impe, 2001), although, as mentioned in the introduction,
p-multipliers are generally obtained from pile-head load
measurements, and therefore reflect the overall pile load
reduction rather than the variation of the ultimate pressure
that is examined in this study.

The variation of Np with s/D illustrated in Fig. 4 can be
explained by considering the different failure mechanisms
that develop for different pile spacings. Fig. 5 shows the
incremental displacements at failure for four normalised
spacings s/D ¼ 1.2, 1.5, 3 and 5. As seen in Fig. 5(a), when
the piles are closely spaced (s/D ¼ 1.2), the soil between
them moves as a rigid body, and at the same velocity as the
piles. In this case the two-pile group behaves as an equiva-
lent non-circular pile of width s + D, resulting in an ultimate
load for each pile of pu ¼ su Np,eq(sþ D)=2: According to
this, the bearing capacity factor of each pile (equation (1))
becomes

Np ¼ Np,eq 1þ s=D� 1

2

� �
(2)

where Np,eq is the undrained bearing capacity factor for the
equivalent non-circular pile. As seen in Fig. 4, for s/D ¼ 1,
Np is slightly lower than the single-pile value (11.69 com-
pared with 11.95), indicating that the bearing capacity factor
for the equivalent non-circular pile (Np,eq) is less than that of
a circular pile. Substituting Np,eq ¼ 11.69 into equation (2)
provides an excellent approximation of Np for failure mode
B (Fig. 4), less than 1% higher than the finite-element

10·0

10·5

11·0

11·5

12·0

12·5

13·0

13·5

1 2 3 4 5

Np

s D/

B A Single
pile

Fig. 4. Variation of Np with s/D for rough pile (Æ 1)
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Fig. 5. Failure mechanisms from displacement finite-element analysis for rough pile (Æ 1):
(a) s/D 1.2; (b) s/D 1.5; (c) s/D 3; (d) s/D 5
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analysis results. The analytical upper-bound solution pre-
sented below gives an even better estimation.

Beyond the pile spacing of s/D ¼ 1.23, which corresponds
to the peak value of Np shown in Fig. 4, the failure
mechanism changes abruptly and becomes smaller in extent,
with the soil between the piles moving in the opposite
direction to the piles, and undergoing plastic deformation.
This is demonstrated clearly in Fig. 5(b), which shows the
failure mechanism for s/D ¼ 1.5. At this normalised spacing,
Np is still greater than the single-pile value, but reduces
rapidly as the pile spacing increases, and becomes lower
than the single-pile value beyond s/D ¼ 1.6. This can be
attributed to the overlapping of the mechanisms of the two
piles.

Displacement finite-element analyses were also performed
for the case of a line of equally spaced piles. The results of
these analyses showed that the reduction of the ultimate
resistance, compared with the single-pile case, at intermedi-
ate pile spacings of 2.5D and 3D is greater than that for a
two-pile group by approximately 85% and 70% respectively.

FINITE-ELEMENT LIMIT ANALYSES
The upper- and lower-bound theorems of plasticity are

powerful tools for predicting the stability of geotechnical
problems, but can be very cumbersome to apply in practice.
Finite-element formulations of these theorems, which have
evolved markedly over the last two decades, provide a new
and exciting means of applying them to complex engineering
problems in a routine manner.

Formally, the lower-bound theorem states that any stress
field that satisfies equilibrium, the stress boundary condi-
tions, and the yield criterion will support a load that does
not exceed the true collapse load. Such a stress field is said
to be statically admissible, and is the quantity that must be
found in a lower-bound calculation. The upper-bound theo-
rem, in contrast, requires the determination of a kinema-
tically admissible velocity field that satisfies the velocity
boundary conditions and the plastic flow rule. For such a
velocity field, an upper bound on the collapse load is found
by equating the power expended by the external loads to the
power dissipated internally by plastic deformation. Both
limit theorems assume a perfectly plastic material with an
associated flow rule, and ignore the effect of geometry
changes.

Finite-element limit analysis is particularly powerful when
upper- and lower-bound estimates are calculated in tandem,
so that the true collapse load is bracketed from above and
below. The difference between the two bounds then provides
an exact measure of the discretisation error in the solution,
and can be used to refine the meshes until a suitably
accurate estimate of the collapse load is found. The formula-
tions used in this investigation stem from the methods
originally developed by Sloan (1988, 1989), but have
evolved significantly over the past two decades to incorpo-
rate the major improvements described in Lyamin & Sloan
(2002a, 2002b) and Krabbenhoft et al. (2005, 2007). Key
features of the methods include the use of linear finite
elements to model the stress/velocity fields, and collapsed
solid elements at all inter-element boundaries to simulate
stress/velocity discontinuities. The solutions from the lower-
bound formulation yield statically admissible stress fields,
while those from the upper-bound formulation furnish kine-
matically admissible velocity fields. This ensures that the
solutions preserve the important bounding properties of the
limit theorems.

Both formulations result in convex mathematical pro-
grams, which (considering the dual form of the upper-bound
problem) can be cast in the form

maximise º

subject to A� ¼ p0 þ ºp

f i(�) < 0, i ¼ f1, . . ., Ng

(3)

where º is a load multiplier, � is a vector of stress variables,
A is a matrix of equality constraint coefficients, p0 and p are
vectors of prescribed and optimisable forces respectively, fi
is the yield function for stress set i, and N is the number of
stress nodes. The solutions to problem (3) can be found
efficiently by using specialised optimisation solvers that are
based on interior-point methods or second-order cone pro-
gramming (e.g. Lyamin & Sloan, 2002a, 2002b; Krabbenhoft
et al., 2007).

Figure 6 shows the finite-element mesh, the power dissipa-
tion, and the horizontal and vertical velocity field plots
obtained from the upper-bound finite-element limit analysis
for s/D ¼ 3 and a fully rough pile (Æ ¼ 1). Comparing Figs
5(c) and 6, it can be seen that the two finite-element
methods predict very similar failure mechanisms. The bear-
ing capacity factor Np obtained from the displacement finite-
element analysis (Np ¼ 11.38) lies between the values
obtained from the upper- and lower-bound finite-element
limit analyses (LB: Np ¼ 11.33 and UB: Np ¼ 11.41). A
similarly excellent comparison of the displacement finite-
element analysis and finite-element limit analysis results was
observed for all pile spacings and adhesion factors, as
discussed in a subsequent section of this paper.

ANALYTICAL UPPER-BOUND SOLUTION
Two kinematic mechanisms will be presented in this

section: the first mechanism gives the optimum solution for
very small pile spacings (failure mode B in Fig. 4), and the
second is optimal for greater pile spacings (failure mode A
in Fig. 4). As both mechanisms are based on existing
solutions for single piles, these solutions will be first pre-
sented in brief.

Existing solutions for single piles
The ultimate lateral pile capacity of a single pile in

undrained clay was calculated analytically by Randolph &
Houlsby (1984), using the upper- and lower-bound plasticity
theorems. One quarter of the upper-bound kinematic mech-
anism used in these calculations is shown in Fig. 7(a). The
loading direction coincides with the y-axis, which is there-
fore an axis of symmetry. The x-axis is also an axis of
symmetry with respect to the geometry of the mechanism,
and an axis of antisymmetry with respect to the velocity
field. The mechanism consists of a rigid region (ABC),
which moves with the pile, four velocity discontinuities (AC,
AO, CDE and AGF), and two plastically deforming regions
(CDEFGA and AGFO). Sections CD and AG of the velocity
discontinuities are involutes of a circle of radius ºR (dashed
line in Fig. 7(a)), where º is equal to cos(arccosÆ/2), while
DE and GF are circular arcs with centre O.

For adhesion factors close to unity (rough pile/soil inter-
face), the above kinematic mechanism yields results that are
practically identical to the lower-bound solution proposed in
the same paper by Randolph & Houlsby (1984). In the
limiting case Æ ¼ 1, Np ¼ 11.94 for both the upper- and
lower-bound solutions, so this value is exact. As the adhe-
sion factor decreases, the upper-bound solution (as corrected
by Murff et al., 1989) based on this mechanism deviates
from the lower-bound solution. For Æ ¼ 0 (a perfectly
smooth pile) the difference is 9.1%.

An alternative mechanism, which gives better results for
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lower values of Æ, was presented by Christensen & Niewald
(1992). This mechanism is shown in Fig. 7(b), and consists
of only two velocity discontinuities (AC and AB) and a rigid
region (ABC) that rotates about point O. For Æ ¼ 0 this
mechanism gives an upper bound that is only 0.8% higher
than the lower bound of Randolph & Houlsby (1984). This
difference increases with increasing Æ, and is 5.5% at Æ ¼ 1.

Martin & Randolph (2006) proposed a combination of the
above two mechanisms that provides the best solution to
date over the whole range of Æ values. This combined
mechanism is shown in Fig. 7(c), and forms the basis on
which the kinematic mechanisms for a two-pile group
presented below were developed. As seen in Fig. 7(c), a
rigid rotating body (XHI) similar to that shown in Fig. 7(b)
is introduced within the plastically deforming region
(AGFO). The optimum size of XHI decreases with increas-
ing pile–soil adhesion, and disappears for Æ ¼ 1. Only one
geometrical parameter, the angle �, is required to define the
mechanism. The optimum mechanism for different adhesion
factors, Æ, is determined by calculating the value of � that
minimises the calculated bearing capacity factor.

Solution for two side-by-side piles
Two kinematic mechanisms are presented in this section.

The first mechanism, shown in Fig. 8, covers many practical

cases and corresponds to mechanism A of Fig. 4, which was
identified in the displacement finite-element results. Geomet-
rical fourfold symmetry is also retained in the case of the
two-pile group, and therefore only a quarter of the mechan-
ism is shown in Fig. 8. Similar to the single-pile case, the
x-axis is an axis of symmetry with respect to the geometry
of the mechanism, and an axis of antisymmetry with respect
to the velocity field. Six geometrical parameters are required
to define the mechanism: the angles �1 and �2 and the
normalised radius º of the evolute circle for the outer part
of the mechanism, the angle of rotation ø, and the angles �91
and �92 of the inner part of the mechanism. The normalised
radius of the evolute circle for the inner part of the mechan-
ism is a function of º, ø, �1 and �91: According to Fig. 8

YC ¼ ºR

sin �1 þ øð Þ ¼
º9R

sin �91 � øð Þ (4a)

and therefore

º9 ¼ º
sin �91 � øð Þ
sin �1 þ øð Þ (4b)

The optimum mechanism, for a given adhesion factor Æ and
pile spacing s, is found by determining the combination of
the six optimisation parameters that results in the minimum
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calculated load, and consequently in the minimum bearing
capacity factor.

As seen in Fig. 8, the outer part of the mechanism (on the
right side of the pile) is similar to the single-pile mechanism
of Martin & Randolph (2006). The main difference is that
the apex (C) of the rigid region in front of the pile is not
necessarily positioned on the pile axis of symmetry, as in the
single-pile case, but is generally positioned at an angle ø to
it. In addition, unlike the single-pile case, the optimum
solution is not obtained for �1 ¼ �/4 and º ¼ cos(arccosÆ/2),
but at different values depending on both the adhesion factor
Æ and the pile spacing s.

The velocities within the two deforming regions (CDEFGA
and AGFIH) are parallel to discontinuities CDE, AGF and HI
(i.e. there is only a tangential component). Since the bound-
aries are also parallel to each other, it follows that, in order
to satisfy the zero volumetric strain condition (undrained
conditions), the velocity may vary only in the radial direction.
The same obviously applies to the velocities within the rigid
rotating body (HIX). The magnitude of the velocity and its
variation within each region of the mechanism are controlled
by the velocity jump at the pile/soil interface. Referring to
Figs 9(a), 9(b) and 9(c), the velocities v and relative velo-
cities ˜v of the outer mechanism can be calculated from the
following equations as functions of the pile velocity v0:

Region HIX (Fig. 8) – discontinuity HX (Fig. 9(a)):

v ¼ v0

sin Ł

sin Łþ łð Þ ¼ v0

cos �2

ºR
r and

˜v ¼ v0

sinł

sin Łþ łð Þ ¼ v0

cos �2

º

(5)

Region AGFIH (Fig. 8) – discontinuity AH (Fig. 9(b)):

v ¼ v0

sin �þ arccos ºð Þ
º

and

˜v ¼ v0

cos�

º

(6)

Region CDEFGA (Fig. 8) – discontinuity AC (Fig. 9(c)):

v ¼ v0 sin �1 and ˜v ¼ v0 cos �1 (7)

The work calculations for the outer part of the mechanism
are similar to those of Randolph & Houlsby (1984) and
Murff et al. (1989), and are briefly presented in the Appen-
dix.

The inner part of the mechanism of Fig. 8 (on the left
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side of the pile) also includes two deforming regions
(C9D9E9F9G9A9 and A9G9F9I9H9) and a rigid rotating block
(H9I9X9) similar to the single-pile case. However, as seen in
Fig. 8, these extend to a velocity discontinuity (X9I9F9E9)
rather than the x-axis. This discontinuity allows the change
of velocity direction that is necessary in order to satisfy the
zero horizontal displacement boundary condition at the plane
of symmetry (y-axis). In order to satisfy compatibility condi-
tions at the velocity discontinuity, the area below it is
divided into three regions: a rigid block (E9F9F0E0) and two
deforming regions (F9I9I0F0 and I9X9I0). Depending on the
values of the optimisation parameters, the centre O9 of the
circular arcs D9E9, G9F9 and H9I9 may be positioned outside
the pile. In this case the velocity discontinuity becomes a
straight line (O9I9F9E9).

The velocities, v, in H9I9X9, A9G9F9I9H9 and C9D9E9F9G9A9
are given by equations (5)–(7), in which �, �1, �2, and º are
substituted by �9, �91, �92 and º9. The velocities, v9, in the
remainder of the mechanism are controlled by the velocity
jump at the discontinuity X9F9I9E9 (or O9F9I9E9, depending on
the position of O9). Based on Fig. 10, which shows the
relationship between the velocities v, v9 and ˜v, and using
equations (5)–(7) to substitute for v, the following relation-
ships are derived for the velocities, v9, in the area below
(X9I9F9E9), and the relative velocities, ˜v, at the discontinu-
ity, as a function of the pile velocity, v0:

Region E9F9F0E0 – discontinuity E9F9:

v9 ¼ v

cos �0

¼ v0

sin �91

cos �0

and

˜v ¼ v tan �0 ¼ v0 sin �91 tan �0

(8)

Region F9I9I0F0 – discontinuity F9I9:

v9 ¼ v

cos �0

¼ v0

sin �9þ arccos º9ð Þ
º9 cos �0

(9a)

and

˜v ¼ v tan �0 ¼ v0

sin �9þ arccos º9ð Þ tan �0

º9
(9b)

Region I9X9I0 – discontinuity (I9X9):

v9 ¼ v
cos �1 � �ð Þ

cos �1

¼ v

O9I9
O9X9þ d

cos �1

� �

¼ v0

cos �92

º9R
Rþ d

cos �1

� �
� 1

� �
(10a)

and

˜v ¼ v
sin �

cos �1

¼ v0

d cos �92 tan �1

º9R
(10b)

The velocity distribution determined through equations (8)–
(10) is also shown in Fig. 10. The angles �0 and �1 of the
mechanism are determined from the geometry of Fig. 10.
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�0 ¼ arccos
s=2ð Þ= º9Rð Þ � sec �92

�91 � �92 þ tan �92 þ cot �91 � øð Þ

" #
(11)

�1 ¼ arctan
tan �0

1þ º9� cos�92ð Þ= sin �92 þ arccos º9ð Þ

� �
(12)

The work calculations, which are based on the velocity
field derived above for the inner section of the mechanism,
are presented in the Appendix. Noting that the force acting
on each pile is the only external force, the undrained bearing
capacity factor for a given set of optimisation parameters is
calculated through the equation

Np ¼
˜Wp=v0

su D
(13)

where ˜Wp is the total work done by the stresses in half of the
symmetric problem corresponding to one pile of the two-pile
group. The optimum value of Np for a given pile spacing and
adhesion factor was calculated by determining the combina-
tion of optimisation parameters resulting in the minimum Np:

As discussed in the previous section, a single failure
mechanism (mechanism B in Fig. 4) that includes both piles
becomes predominant in the special case of very closely
spaced piles. Such an upper-bound kinematic mechanism,
which is essentially a simple variation of the Martin &
Randolph (2006) mechanism for single piles, is shown in
Fig. 11. The rigid soil region (shaded area in Fig. 11) is
much larger than that for a single pile (Fig. 7(c)), and
includes the soil between the two piles. Only one geometric
parameter, the angle �, is required to define the mechanism.
Work calculations and the derivation of the bearing capacity
factor Np are presented in the Appendix.

RESULTS AND DESIGN EQUATIONS
The displacement finite-element analysis, finite-element

limit analysis and analytical upper-bound results are com-
pared in Figs 12–14 for three values of the adhesion factor,
Æ ¼ 0, 0.5 and 1. Excellent agreement is observed between
the displacement finite-element analysis and finite-element
limit analysis results for all adhesion factors The difference
between the numerical upper and lower bounds is very small
in all cases, ranging from 0.6% for Æ ¼ 1 and s/D ¼ 1.15 to
1.5% for Æ ¼ 0 and s/D ¼ 1.75. It is observed that the
displacement finite-element results always fall within the
numerical lower and upper bounds.

It can also be seen in Figs 12–14 that the analytical upper-
bound results are also in very good agreement with the
numerical results. This agreement is excellent (, 1%) at
small pile spacings (mechanism B), while at greater pile
spacings the best agreement is observed for the case of a fully
rough pile, Æ ¼ 1 (Fig. 12), for which the upper-bound Np

values are up to 3.6% higher than those from the displacement
finite-element analysis. The difference between the analytical
upper-bound and displacement finite-element results increases
slightly as Æ decreases, but generally remains less than 5%.

Further comparison of the solutions presented in this
paper is shown in Figs 15 and 16. Fig. 15 presents the finite
element incremental displacements at failure together with

y
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G
A

H

X
O I F E x

v0

v0

λ αcos(arccos /2)�

Optimisation parameter: �
π/4

λR
�

Fig. 11. Kinematic mechanism for two-pile group (mechanism B)
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the optimum analytical upper-bound mechanism for Æ ¼ 0.5
and s/D ¼ 1.1. The excellent agreement in the calculated Np

values, discussed in the previous paragraph, can also be
observed in the predicted failure mechanism. This excellent
agreement is observed for all adhesion factors and pile
spacings for this type of failure (mechanism B of Fig. 4).
For greater pile spacings the agreement among the different
solutions is also very good, as seen in Fig. 16 for s/D ¼ 2.5
and Æ ¼ 0.5.

As discussed in the previous paragraphs, the displacement
finite-element analysis results always lie between the closely
spaced finite-element upper- and lower-bound numerical re-
sults, while the analytical solution presents a theoretical upper
bound that is very close to the numerical results. It is there-
fore reasonable to consider the displacement finite-element
results as the exact solution for all practical purposes.

The relationship between Np and s/D for Æ ¼ 0, 0.25, 0.5,
0.75 and 1, obtained from the displacement finite-element
results, is shown in Fig. 17. As indicated, the relationship is
similar for all values of Æ. Two critical pile spacings can be
identified for each value of Æ: the spacing sp/D, which
corresponds to the peak bearing capacity factor Npp; and the
spacing s1/D, which corresponds to the single-pile bearing

capacity factor Np1 (Fig. 18). According to Fig. 17, both sp/D
and s1/D vary with the adhesion factor Æ, and can be
approximated by the following linear equations.

sp=D ¼ 1:05þ 0:18Æ (14)

s1=D ¼ 3:1þ 1:4Æ (15)

The bearing capacity factors Np0 for s/D ¼ 1 and Npp at
peak can be expressed by

Np0 ¼ 10:35þ 1:4Æ (16)

Npp ¼ Np0 þ 5:4
sp

D
� 1

� �
(17)

while the single-pile bearing capacity factor Np1 is given by
the lower-bound analytical expression by Randolph & Houlsby
(1984),

Np1 ¼ �þ 2 arcsinÆþ 2 cos arcsinÆð Þ

þ 4 cos
arcsinÆ

2

� �
þ sin

arcsinÆ

2

� �� � (18)

For pile spacings between 1 and sp/D, Np varies linearly
between Np0 and Npp: For pile spacings between sp/D and
s1/D, Np varies nonlinearly, and can be accurately approxi-
mated by the expression

Np ¼ Npp

s

sp

� �b Np1

Npp

sp

s1

� �b
" # sp=sð Þ�1½ �= sp=s1ð Þ�1½ �

(19)

where b ¼ 0:75=(1þ Æ):
The Np –s/D relationships for various adhesion factors Æ,

obtained using equations (14)–(19), are compared with the
numerical results in Fig. 17.
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Fig. 15. Incremental displacements at failure (FEA) and upper-
bound mechanism for Æ 0.5 and s/D 1.1
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Fig. 16. Incremental displacements at failure (FEA) and upper-
bound mechanism for Æ 0.5 and s/D 2.5
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CONCLUSIONS
Four methods of analysis were employed to calculate the

ultimate lateral earth pressure for two side-by-side piles: the
displacement finite-element method, the upper- and lower-
bound finite-element methods and the analytical upper-bound
plasticity method. Based on the results of the analyses per-
formed, two distinct failure mechanisms were identified: a
mechanism that is predominant at small pile spacings, in
which both piles and the soil between them move as one rigid
body; and a second mechanism in which two separate but
overlapping mechanisms develop for each pile. The maximum
value of the lateral bearing capacity factor for a given pile–
soil adhesion is observed at the transition point between the
two mechanisms, while the lowest bearing capacity is observed
for the second mechanism at intermediate pile spacings.

The results of all four methods used were shown to be in
very good agreement. The displacement finite-element re-
sults always fall between the finite-element limit analysis
bounds, while the new analytical solution gives a close
theoretical upper bound to the numerical results.

Finally, a design chart and design equations were presented
for the calculation of the ultimate lateral bearing capacity
factor as a function of pile spacing and pile–soil adhesion.

APPENDIX
The dissipation along a velocity discontinuity is

�f

ð Li

0

vidl (20)

and within a plastically deforming region is

su

ð
A

_ªdA (21)

where vi is the relative velocity and Li is the length of discontinuity
i, _ª is the shear strain rate, and �f is the ultimate shear stress along
the discontinuity (equal to su in the soil and Æsu along the pile/soil
interface). If vi and _ª are negative over part of a discontinuity or
plastically deforming region, respectively, then their absolute values
need to be used in equations (20) and (21). This was not, however,
the case in any of the calculations presented in this paper.

The shear strain rate in cylindrical coordinates (r, Ł, z) is given by
the following equation (for vz ¼ 0).

_ª ¼ �Ł
r
� @�Ł
@ r
� 1

r

@�r

@Ł
(22)

Kinematic mechanism A
Outer section mechanism. The lengths of the velocity disconti-

nuities of the partial mechanism of Fig. 19 are

LHX ¼ R �2 þ¸ð Þ

LAH ¼ R �1 � �2ð Þ

LCA ¼ R
cos øþ �1 þ¸ð Þ

sin øþ �1ð Þ

LCD ¼
ð�1

�2

rd� ¼
ð�1

�2

LDG þ R sin¸þ º �1 � �ð Þ½ �
� �

d�

¼ R �1 � �2ð Þ cos øþ �1 þ¸ð Þ
sin øþ �1ð Þ þ sin¸þ º

2
�1 � �2ð Þ

� �

LAG ¼ R �1 � �2ð Þ sin¸þ º �1 � �2ð Þ
2

� �

LGF ¼ R
�

2
þ �2

� �
º �1 � �2 þ tan �2ð Þ þ sin¸½ �

LDE ¼
�

2
þ �2

� �
LCA þ LGFð Þ

(23)

where ¸ ¼ arccosº:
For undrained conditions the relative velocities are parallel to the

velocity discontinuities. It is straightforward to show that if the pile
has a velocity v0 parallel to the y-axis, the relative velocities for the
partial mechanism are

vHX ¼ v0

cos �2

º

vAH ¼ v0

cos �

º

vCA ¼ v0 cos �1

vCD ¼ vDE

vAG ¼ vGF ¼ v0

sin �1 þ¸ð Þ
º

� sin �1

� �
(24)

The work done along the velocity discontinuities for the outer part
of the mechanism is

su
Æ LHXvHX þ v0 R

sin �1 � sin �2

º

� �
þ LCAvCA þ LCDvCD þ LDEvDE þ LAGvAG þ LGFvGF

2
64

3
75 (25)

The total work for this part of the mechanism includes the work
done within the three plastically deforming regions AGH, CDEFGA
and GFIH, as follows.

Region AGH

suv0 R

ð�1þ¸

�2þ¸

ð�þ¸
�2þ¸

sin �þ¸ð Þ � cos � þ¸ð Þ tan¸þ � � tð Þ½ �dtd�

(26)

where the angles � and t are defined in Fig. 19. As discussed by
Martin & Randolph (2006), in the Randolph & Houlsby (1984)
mechanism, which includes a similar deforming region (AGO in Fig.
7(a)), the work integrand becomes negative in part of the region for
Æ , 1. This could be overcome by introducing the absolute value of
the integrand in the above expression and performing the integration
numerically. It was found, however, in this study that the introduc-
tion of the rigid rotating region HIX (Fig. 19) resolves this issue,
and the above integrand is always positive in the optimum
mechanism for any value of Æ. The same applies to the similar
integral of the inner section of the mechanism.

Integrating expression (26) gives the following work expression
for (AGH).

v0su R

�2 sin �2 þ¸ð Þ þ cos �2 þ¸ð Þ sin¸

º

� cos �1 þ¸ð Þ 2 �1 � �2ð Þ þ sin¸

º

� �

� 1

2
sin �1 þ¸ð Þ

3 �1 � �2ð Þ2 þ 2 �1 � �2ð Þ sin¸

º
� 4

� �

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(27)
v0

ω

�1

�2
�

λR

A
G

H

t 	

XO I F E x

C

D

Fig. 19. Outer upper-bound mechanism
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Region CDEFGA

v0su R sin �1

ð�1þ�=2

0

cos øþ �1 þ¸ð Þ
sin øþ �1ð Þ d�

Therefore

v0su R cos øþ �1 þ¸ð Þ sin �1ð Þ
sin øþ �1ð Þ

�

2
þ �1

� �
(28)

Region GFIH

v0su R

ð�1þ¸

�2þ¸

ð �=2ð Þþ�2

0

sin �þ¸ð Þ � cos �þ¸ð Þ½

3 tan �2ð Þ þ tan¸þ � � �2½ ��d�d�

Therefore

v0su R
�

2
þ �2

� � 2 cos �2 þ¸ð Þ � cos �1 þ¸ð Þ½ �

� sin �1 þ¸ð Þ �1 � �2 þ tan �2 þ
sin¸

º

� �

þ sin �2 þ¸ð Þ tan �2 þ
sin¸

º

� �

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

(29)

Inner section mechanism. The lengths of the velocity disconti-
nuities of the partial mechanism of Fig. 20 are

LH9X9 ¼ R �92 þ¸9ð Þ
LA9H9 ¼ R �91 � �92ð Þ

LCA9 ¼ LE9F9 ¼ R
cos �91 þ¸9� øð Þ

sin �91 � øð Þ

LCD9 ¼
ð�91

�92

rd�

¼ R �91 � �92ð Þ cos �91 þ¸9� øð Þ
sin �91 � øð Þ þ sin¸9þ º9

2
�91 � �92ð Þ

� �

LA9G9 ¼ R �91 � �92ð Þ sin¸9þ º9 �91 � �92ð Þ
2

� �

LG9F9 ¼ R
�

2
þ �92 � �0

� �
º9 �91 � �92 þ tan �92ð Þ þ sin¸9½ �

LD9E9 ¼
�

2
þ �92 � �0

� �
LCA9 þ LG9F9ð Þ

LF9I9 ¼ º9R �91 � �92ð Þ

LI9X9 ¼
sin �0

sin �1

R º9 tan �92 þ sin¸9ð Þ

LF9F 0 ¼ LI9X9 sin �1 þ º9R sin �0 �91 � �92ð Þ
(30)

where ¸9 ¼ arccos º9:
The relative velocities for the partial mechanism are

vH9X9 ¼ v0

cos �92

º9

vA9H9 ¼ v0

cos �9

º9

vCA9 ¼ v0 cos �91

vCD9 ¼ vD9E9 ¼ v0 sin �91

vE9F9 ¼ v0 sin �91 tan �0

vF9I9 ¼ v0

sin �9þ¸9ð Þ tan �0

º9

vI9X9 ¼ v0

d cos �92 tan �1

º9R
(vI9X9 varies linearly along I9X9)

vF9F 0 ¼
v0

cos �0

sin �9þ¸9ð Þ
º9

� sin �91

� �

(31)

The work done along the velocity discontinuities is

su

Æ LH9X9vH9X9 þ v0 R
sin�91 � sin�92

º9

� �

þ LCA9vCA9 þ LCD9vCD9 þ LD9E9vD9E9 þ LA9G9vA9G9

þ LG9F9vG9F9 þ LE9F9vE9F9 þ v0 R tan �0 cos �92 þ¸9ð Þ½

� cos �91 þ¸9ð Þ�

þ v0 R tan �0

º9 tan�92 þ sin¸9ð Þ2 cos�92

2º9
þ LF9F 0vF9F 0

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(32)

The total work for the inner section of the mechanism also includes
the work done within the five plastically deforming regions A9G9H9,
CD9E9F9G9A9, G9F9I9H9, F9I9I0F0 and I9X9I0, as follows.

Region A9G9H9
The derivation is the same as for the inner section of the

mechanism.

v0su R

�2 sin �92 þ¸9ð Þ þ cos �92 þ¸9ð Þ sin¸9

º9

� cos �91 þ¸9ð Þ 2 �91 � �92ð Þ þ sin¸9

º

� �

� 1

2
sin �91 þ¸9ð Þ

�91 � �92ð Þ2 þ 2 �91 � �92ð Þ sin¸9

º9
� 4

� �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

(33)

Region CD9E9F9G9A9

v0su R sin �91

ð�91þ�=2��0

0

cos �91 þ¸9� øð Þ
sin �91 � øð Þ dł

Therefore

v0su R cos �91 þ¸9� øð Þ sin �91

sin �91 � øð Þ
�

2
þ �91 � �0

� �
(34)

Region G9F9I9H9

v0su R
�

2
þ�92��0

� �
2 cos �92þ¸9ð Þ�cos �91þ¸9ð Þ½ �

�sin �91þ¸9ð Þ �91��92þ tan�92þ
sin¸9

º9

� �

þsin �92þ¸9ð Þ tan�92þ
sin¸9

º9

� �

2
6666664

3
7777775

(35)

Region F9I9I0F0
Velocities in this region are parallel to the y-axis, and are given by

equation (9) as a function of angle �9. Equation (9) can be expressed
in terms of the x coordinate as

y
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Fig. 20. Inner upper-bound mechanism
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v9 ¼ v0

º9 cos �0

sin

�92 � tan �92 þ arccos º9� sin¸9

º9

þ s=2� x

º9R cos �0

� 1

cos �92 cos �0

0
BBB@

1
CCCA

The shear strain rate is

_ª ¼ @�z

@x
þ @vx

@z

¼ � v0

º92 R cos2 �0

cos

�92 � tan �92 þ¸9� sin¸9

º9

þ s=2� x

º9R cos �0

� 1

cos �92 cos �0

0
BBB@

1
CCCA

The work done in the region is

� suv0

º92 R cos2 �0

ðx2

x1

ð y

0

cos
�92 � tan �92 þ¸9� sin¸9

º9

þ s=2� x

º9R cos �0

� 1

cos �92 cos �0

0
BB@

1
CCA dy dx

where

x1 ¼
s

2
� R

cos �92
º9þ cos �0 sin �92 �¸9ð Þ½ �

x2 ¼
s

2
� R

cos �92
º9þ cos �0 sin �92 �¸9ð Þ½ �

� º9R cos �0 �91 � �92ð Þ

y ¼ s

2
� º9R

cos �92
� x

� �
tan �0

and therefore the work in F9I9I0F0 is

suv0 tan �0 R

cos �91 þ¸9ð Þ � cos �92 þ¸9ð Þ
þ sin �91 þ¸9ð Þ �91 � �92ð Þ

sin �91 þ¸9ð Þ � sin �92 þ¸9ð Þ½ � sin �92 þ¸9ð Þ
º9 cos �92

8>>>><
>>>>:

9>>>>=
>>>>;

(36)

Region I9XI0
The shear strain rate is

_ª ¼ @

@x
�v0

cos �92

º9R
Rþ s=2� º9= cos �92 � x

cos2 �1

� �
� 1

� �� 	

¼ v0

cos �92

º9R cos2 �1

The work done in the region is

su

ð
A

_ªdA ¼ su _ªA ¼ suv0

cos �92 tan �1

2º9R
(37)

Kinematic mechanism B
The total work done in one quarter of mechanism B (Fig. 11) can be

calculated using, a similar procedure as for the outer part of mechanism
A, making the following substitutions: º ¼ cos(arc cos =Æ), ø ¼ 0,
�1 ¼ �/4 and �2 ¼ �.

The geometrical parameters, velocities and work calculations are
given by equations (23)–(29), with the exception of lengths LCA and
LCD

LCA ¼ R
ffiffiffi
2
p

sin
�

4
� arccosÆ

2

� �
þ s

2R

� �

LCD ¼ R
�

4
� �

� � ffiffiffi
2
p s

2R
þ cos

arccosÆ

2

� �
1þ �

8
� �

2

� �" #

and the work done in section CDEFGA

v0su R

ffiffiffi
2
p

2

ð3�=4

0

sin
�

4
� arccosÆ

2

� �
þ s

2R

� �
d�

¼ v0su R sin
�

4
� arccosÆ

2

� �
þ s

2R

� �
3
ffiffiffi
2
p

�

8

(38)

NOTATION
A matrix of equality constraint coefficients
D pile diameter
d distance from X9 along discontinuity X9I9

Ep modulus of elasticity of pile
Eu undrained modulus of elasticity
fi yield function for stress set i

Li length of discontinuity i
N number of stress nodes

Np lateral bearing capacity factor
Npp peak lateral bearing capacity factor

Np,eq lateral bearing capacity factor for
equivalent non-circular pile

Np0 lateral bearing capacity factor for s ¼ 0
Np1 single pile lateral bearing capacity factor
pu ultimate lateral load per unit length

p0, p vectors of prescribed and optimisable
forces respectively

R pile radius
r, z, Ł cylindrical coordinates

s centre-to-centre pile spacing
sp pile spacing corresponding to Npp

su undrained shear strength
s1 pile spacing beyond which Np ¼ Np1

t, �, ł angles specifying radial characteristics
v0 pile lateral velocity

v, ˜v internal lateral velocities of failure
mechanism

vi relative velocity of discontinuity i
˜Wp work done by internal stresses

y lateral pile displacement
Æ adhesion factor
� angle specifying tangential characteristics

�1, �2, �91, �92, º, ø geometrical optimisation parameters
_ª shear strain rate
¸ arccos º
�p Poisson’s ratio of pile
�u undrained Poisson’s ratio

�0, �1 angles defining the kinematic mechanism
� vector of stress variables
�f ultimate shear stress along discontinuity
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